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In this paper we create a new combinatorics which we call q-combinatorics and 
investigate the meaning of q-permutations and q-combinations. 

In this paper  we create q-combinatorics and investigate the meaning of  
q-permutations and q-combinations. Here we modify the task of selecting 
r objects among n objects into the task of  q-selecting, which will be fully 
discussed later. Moreover,  in defining the q-combination, we introduce the 
idea of  q-selecting in a q-order, which is also explained later. The addition 
principle and multiplication principle are preserved and are widely used in 
developing our new combinatorics. 

First we start with the following question: In how many ways can we 
q-select one element f r o m  a set o f  n different elements denoted by 
1,2 ,3  . . . . .  n? 

To answer the above question, we consider the following situation. 
Arrange n different elements in a line as follows: 

1 ,2 ,3  . . . .  , n  

Here we impose the following two conditions on the rule of  q-selecting one 
element from the above arrangement.  

(I) We can only select an element through traveling from the left. 
(II)  When we jump one element in a line, we pay with a factor q in the 

number of  ways. 
When we select an element in a line according to the above two 

conditions, we will say that we select q-select an object in a line. 
For  example, when we q-select 1 in a line from the left, we need not 

pay any more because we do not jump. However, when we q-select 2 in a 

~Theory Group, Department of Physics, College of Natural Sciences, Gyeongsang National 
University, Jinju, 660-701, Korea. 

851 
0~20-7748/94/0400-0851507.00/0 �9 1994 Plenum Publishing Corporation 



852 Chung and Kang 

line f rom the left, the number  of  ways of  q-selecting 2 is not  the same as 
that  o f  q-selecting 1, because we j u m p  once for the purpose  o f  approach ing  
2. Instead,  the number  of  ways of  q-selecting 2 is q times the number  of  
ways of  q-selecting 1. Similarly, the n u m b e r  of  ways of  q-selecting r in a 
line f rom the left is q r -  ~ because we j u m p  (r - 1) times. 

Therefore  we say that  the number  of  ways of  q-selecting one object 
f rom a set o f  n different objects is 

,,Pq = 1 + q  + q 2 +  . . .  + q , , -  1 

1 - q "  
- -  - -  - [n] 

1 - - q  

where [n] is called a q-number .  
N o w  we can easily show that  the number  o f  q -permuta t ions  of  a set o f  

n different objects, taken r at  a time, wi thout  repetit ion, is 

[n]! ~pq - _ _  
[n - r ] !  

where 

and 

[n]! = [n][n -- 1][n -- 2] . . .  [2][1] 

[o]~ = l 

The p r o o f  is simple by virtue of  appl icat ion of  the mult ipl icat ion 
principle. Suppose that  we have r spaces to fill and n objects f rom which to 
q-select. The  first space can be filled with any one of  the n objects, and so 
in [n] ways. After  the first space has been filled with any one to be 
q-selected f rom n objects, there remain n - 1 objects, any one of  which can 
be q-selected and put  in the second space. Thus  the second space can be 
filled in [n - 1] ways. Similarly, the third space can be filled in [n - 2] ways, 
the four th  space in [ n -  3] ways, and so on. The  pat tern  shows that  the 
tenth space can be filled in [n - 9 ]  ways,  and in general, the r th  space in 
[n - ( r  - 1)] ways. F r o m  the mult ipl icat ion principle, the r spaces can be 
filled in 

,Pq  =[n][n - 1] . . .  [n - r + 1] 

ways. This takes another  convenient  fo rm if we mult iply by I n -  r]!/ 
In - r ]  !, since then we can write 

[nl~ 
npq = _ _  

In -- r]! 
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Now we discuss the meaning of  q-combination. Let us def ine ,  C q as a 
q-combination of  n objects in a certain order taken r at a time. To begin 
with, we present a simple example: let us consider the case that we q-select 
one object from four objects in a line 

1 , 2 , 3 , 4  

(I) The case that 1 is q-selected: We do not jump, so we can q-select 
1 in one way. 

(II)  The case that 2 is q-selected: We jump once, so we can q-select 2 
in q ways. 

( III)  The case that 3 is q-selected: We jump twice, so we can q-select 
3 in q2 ways. 

(IV) The case that 4 is q-selected: We jump three times, so we can 
q-select 4 in q3 ways. 

From the addition principle, the number of  q-combinations of  four 
objects in a certain order taken one at a time is 

4 C q  = 1 + q + q2 + q3 = [4] 

NOW consider the case that two objects are q-selected in a certain 
order called a q-order and that the object at the left is first q-selected. 

(I) The case that 1 and 2 are q-selected: First we should q-select 1 and 
then we should q-select 2 because 1 lies at the left in relation to 2. When 
we q-select 1 in a line, we do not jump and can q-select 1 in one way. After 
1 is q-selected, we have 

2 , 3 , 4  

When we then q-select 2 in the line where 1 is deleted, we also do not jump 
and can q-select 2 in one way. Therefore the number of  ways of  q-selecting 
1 and 2 in a q-order is 1 x 1 = 1. 

(II) The case that 1 and 3 are q-selected: We can q-select 1 in a line 
without jumping, and so in one way. After 1 is q-selected, we have 

2 , 3 , 4  

When we then q-select 3 in the line where 1 is deleted, we jump once and 
can q-select in q ways. Therefore the number  of  ways of  q-selecting 1 and 
3 i n a q - o r d e r i s  l •  

( I II)  The case that 1 and 4 are q-selected: We can q-select 1 in a line 
without jumping, and so in one way. After 1 is q-selected, we have 

2 , 3 , 4  

When we then q-select 4 in the line where 1 is deleted, we jump twice and 
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can q-select 4 in q2  ways. Therefore the number of ways of q-selecting 1 
and 4 in a q-order is 1 • q2= q2. 

(IV) The case that 2 and 3 are q-selected: When we q-select 2 in a line, 
we jump once and can q-select 2 in q ways. After 2 is q-selected, we have 

1, 3,4 

When we then q-select 3 in the line where 2 is deleted, we jump once and 
can q-select 3 in q ways. Therefore the number of ways of q-selecting 2 and 
3 in a q-order is q x q =q2. 

(V) The ease that 2 and 4 are q-selected: First we q-select 2 in q ways 
and then we have 

1,3,4 

Then, in order to q-select 4, we should jump twice. Therefore the number 
of ways of q-selecting 2 and 4 in a q-order is q • q2 = q3.  

(VI) The case that 3 and 4 are q-selected: First we q-select 3 in q2 
ways and then we have 

1,2,4 

Then, in order to q-select 4, we jump twice. Therefore the number of ways 
of q-selecting 3 and 4 in a q-order is q2 x q2 = q4.  

Therefore the q-combination of four object_s, taking two in a q-order, 
is 

4C~= 1 + q + 2q2 + q3 + q 4 

[4]! 

[2]! [2]! 

This can be generalized to the more general case. Generally, the q-combina- 
tion of n objects, taking r in a q-order, is given by 

[nlt 
,C~ = 

[r]~ In  - r]~ 

Now we will prove the above statement by means of mathematical 
induction. Let us consider the number of ways of q-selecting n objects, 
taking r in a q-order. Then r objects can be written in the sequence 

{i,, i2 . . . . .  ir} 
where we arrange the r objects according to the following rule: 

i l < i 2 < ' " < i ,  

First, in order to q-select il, we jump il - 1 times. Therefore we q-select il 
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in q q -  1 ways and then we have 

where the caret  means  that  the element is deleted in the sequence 
{1,2 . . . . .  n}. 

Second, in order  to q-select i2 in the sequence where il is deleted, we 
j u m p  i 2 -  2 times because il was to the left in relation to /2 .  Therefore  we 
can q-select i2 in qi2- 2 ways. Similarly we can q-select ik (k = 1, 2 . . . . .  r) in 
qgk - k ways. 

The  mult ipl icat ion principle indicates that  we can q-select 
{il, i 2 , ' - - , i r }  in 

q i  1 - l q l  2 -  2 . . . qi , .  r 

ways. Since we can choose the r elements {il, i2 . . . . .  ir } in , Cr ways, we 
can therefore q-select r objects a m o n g  n objects in 

~ ,  q i l -  l q 1 2 - 2  . . . q i r  - r  

i l < i 2 < . . . < i  r 

ways. Our  next task is to prove  that  

n Cqr = E q i l - l q i 2 - 2 " ' ' q  i r - r  

i l < i 2 < . . . < i  r 

= ~ qZ~ = 1 ik - - r ( r +  1) /2  

i l  < i 2 < " ' < i  r 

In order  to use mathemat ica l  induction,  we assume that  the above  relat ion 
holds for  n objects. Let  the ways of  q-selecting r objects a m o n g  n + 1 
objects be K. Then  K is writ ten as 

where 

Then we have 

K =  ~ q y ' }= l l j  - r(r + l ) /2  

11 < 1 2 < . . . < / r  

{I1,I2 . . . . .  /~} c {1, 2 . . . . .  n, n + 1} 

where 

K= ~" q ~ 5 =  l iJ - r(r + l) /2 

i l < i 2 < ' " < i  r 

+ ~ qZ5- t ij + n +  1 - -  r ( r  + 1 ) /2  

i l  < i 2 < " ' < i r _ l  < i r = n +  l 

{i,, i2 . . . . .  ir--1, ir} = {1, 2 . . . . .  n} 
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Hence we have 

K=.CO~ +qn+l-rnCq_l  

=n+:C~ 

which completes the proof by induction. 
On the other hand, we have the simple relation of q-combination 

.C~ = cq n n - - r  

The relation between q-permutation and q-combination is as follows: 

nP~ 
,,C~ = [r]~ 

In this paper we have discussed the meaning of q-permutations and 
q-combination by introducing the ideas of q-selecting and q-order. In 
particular, we have been concerned with q-distributions such as the q-bino- 
mial distribution, the q-normal distribution, and so forth. We think that 
these and related topics will become clear in the near future. We hope that 
this type of new combinatorics will shed light on various areas of q-physics 
and q-mathematics. 
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